首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   1篇
  国内免费   1篇
安全科学   2篇
环保管理   1篇
综合类   13篇
基础理论   15篇
污染及防治   48篇
评价与监测   9篇
社会与环境   7篇
  2023年   4篇
  2022年   11篇
  2021年   6篇
  2020年   6篇
  2019年   11篇
  2018年   5篇
  2017年   8篇
  2016年   6篇
  2015年   6篇
  2014年   4篇
  2013年   11篇
  2012年   4篇
  2011年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有95条查询结果,搜索用时 31 毫秒
21.
This study aimed to assess the impacts of climate change on residential energy consumption in Dhaka city of Bangladesh. The monthly electricity consumption data for the period 2011–2014 and long-term climate variables namely monthly rainfall and temperature records (1961–2010) were used in the study. An ensemble of six global circulation models (GCMs) of coupled model intercomparison project phase 5 (CMIP5) namely, BCCCSM1-1, CanESM2, MIROC5, MIROC-ESM, MIROC-ESM-CHEM, and NorESM1-M under four representative concentration pathway (RCP) scenarios were used to project future changes in rainfall and temperature. The regression models describing the relationship between historical energy consumption and climate variables were developed to project future changes in energy consumptions. The results revealed that daily energy consumption in Dhaka city increases in the range of 6.46–11.97 and 2.37–6.25 MkWh at 95% level of confidence for every increase of temperature by 1 °C and daily average rainfall by 1 mm, respectively. This study concluded that daily total residential energy demand and peak demand in Dhaka city can increase up to 5.9–15.6 and 5.1–16.7%, respectively, by the end of this century under different climate change scenarios.  相似文献   
22.
Tripathi  Rahul  Dhal  B.  Shahid  Md  Barik  S. K.  Nayak  A. D.  Mondal  B.  Mohapatra  S. D.  Chatterjee  D.  Lal  B.  Gautam  Priyanka  Jambhulkar  N. N.  Fitton  Nuala  Smith  Pete  Dawson  T. P.  Shukla  A. K.  Nayak  A. K. 《Environment, Development and Sustainability》2021,23(8):11563-11582

A study was conducted to examine the interrelationships among socioeconomic factors, household consumption patterns, calorie intake and greenhouse gas emissions factors in rural eastern India based on household survey data. Findings indicated that higher monthly per capita incomes (12.1–80.1$) were associated with greater average calorie intakes (2021–2525 kcal d?1). As estimated by the FEEDME model, in total 17.2% of the population was calorie malnourished with a regional disparity of 29.4–18.2% malnourishment. Greenhouse gas (GHG) emissions were calculated only on the basis of crop and livestock production and consumption. Rice accounted for the highest share of total GHG emissions, on average 82.6% on a production basis, which varied from 58.1% to 94.9% in regional basis. Rice contributed the greatest share (~?65% and 66.2%) in terms of both calories and GHG emissions (CO2 eq y?1), respectively, on a consumption basis. We conclude that extensive rice farming and increasing animal product consumption are dominant factors in the higher carbon footprint in this region and are likely to further increase with increase in per capita income. This study provides useful information to help for better crop planning and for fine-tuning food access policy, to reduce carbon footprint and calorie malnutrition.

  相似文献   
23.
Environmental Monitoring and Assessment - Few estuaries remain unaffected by water management and altered freshwater deliveries. The Caloosahatchee River Estuary is a perfect case study for...  相似文献   
24.
25.
Environmental Science and Pollution Research - Salinity is a worldwide environmental problem of agricultural lands. Smoke and plant growth-promoting bacteria (PGPR) are individually used to improve...  相似文献   
26.
The concentration addition (CA) and the independent action (IA) models are widely used for predicting mixture toxicity based on its composition and individual component dose–response profiles. However, the prediction based on these models may be inaccurate due to interaction among mixture components. In this work, the nature and prevalence of non-additive effects were explored for binary, ternary and quaternary mixtures composed of hydrophobic organic compounds (HOCs). The toxicity of each individual component and mixture was determined using the Vibrio fischeri bioluminescence inhibition assay. For each combination of chemicals specified by the 2n factorial design, the percent deviation of the predicted toxic effect from the measured value was used to characterize mixtures as synergistic (positive deviation) and antagonistic (negative deviation). An arbitrary classification scheme was proposed based on the magnitude of deviation (d) as: additive (10%, class-I) and moderately (10 < d  30%, class-II), highly (30 < d  50%, class-III) and very highly (>50%, class-IV) antagonistic/synergistic. Naphthalene, n-butanol, o-xylene, catechol and p-cresol led to synergism in mixtures while 1, 2, 4-trimethylbenzene and 1, 3-dimethylnaphthalene contributed to antagonism. Most of the mixtures depicted additive or antagonistic effect. Synergism was prominent in some of the mixtures, such as, pulp and paper, textile dyes, and a mixture composed of polynuclear aromatic hydrocarbons. The organic chemical industry mixture depicted the highest abundance of antagonism and least synergism. Mixture toxicity was found to depend on partition coefficient, molecular connectivity index and relative concentration of the components.  相似文献   
27.
28.
Evaluation of biological effects using a rapid, sensitive and cost effective method can indicate specific information on toxicity/ecotoxicity. Since assays based on animals, plants and algae are expensive, time consuming and require large sample volume, recent studies have emphasized the benefits of rapid, reproducible and cost effective bacterial assays for toxicity screening and assessment. This review focuses on a bacterial assay, i.e., Vibrio fischeri bioluminescence inhibition assay, which is often chosen as the first test in a test battery based on speed and cost consideration. The test protocol is simple and was originally applied for aqueous phase samples or extracts. The versatility of the assay has increased with subsequent modification, i.e., the kinetic assay for turbid and colored samples and the solid phase test for analyzing sediment toxicity. Researchers have reported the Vibrio fischeri bioluminescence assay as the most sensitive across a wide range of chemicals compared to other bacterial assays such as nitrification inhibition, respirometry, ATP luminescence and enzyme inhibition. This assay shows good correlations with other standard acute toxicity assays and is reported to detect toxicity across a wide spectrum of toxicants.  相似文献   
29.
Species Redundancy and Ecosystem Reliability   总被引:35,自引:0,他引:35  
  相似文献   
30.
In a hydroponic culture, experiments were performed to study the influence of potassium (K) supplementation (0, 20, 40, 60, 80, and 100 mg L?1) on the arsenic (As; 0, 8, and 10 mg L?1)-accrued changes in growth traits (plant biomass, root–shoot length) and the contents of lepidine, As and K, in garden cress (Lepidium sativum Linn.) at 10 days after treatment. The changes in these traits were correlated with shoot proline content, protein profile, and the activities of antioxidant enzymes namely superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), glutathione reductase (GR, EC 1.8.1.7), and ascorbate peroxidase (APX, EC 1.11.1.11). In general, As-alone treatments significantly decreased the growth traits but lead to significant enhancements in shoot proline and enzyme activities. K-supplementation to As-treated L. sativum seedlings decreased shoot-As content, reduced As-induced decreases in growth traits but enhanced the content of shoot proline, and the activities of the studied enzymes maximally with K100 + As8 and As10 mg L?1. Both 8 and 10 mg L?1 of As drastically downregulated the shoot proteins ranging from 43–65 kDa. With As10 mg L?1, there was a total depletion of protein bands below 23 kDa; however, K80 mg L?1 maximally recovered and upregulated the protein bands. Additionally, protein bands were downregulated (at par with As-alone treatment) above K80 mg L?1 level. Interestingly, As-stress increased lepidine content in a dose-dependent manner which was further augmented with the K-supplementation. It is suggested that K protects L. sativum against As-toxicity by decreasing its accumulation and strengthening antioxidant defense system and protein stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号